AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Neural cell adhesion molecule L1

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.

From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Our collaborator, Reaxense, aids in their synthesis and provision.

Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.

We use our state-of-the-art dedicated workflow for designing focused libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.

Key features that set our library apart include:

  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.
  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.
  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.
  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.

partner

Reaxense

upacc

P32004

UPID:

L1CAM_HUMAN

Alternative names:

-

Alternative UPACC:

P32004; A0AV65; A4ZYW4; B2RMU7; G3XAF4; Q8TA87

Background:

The Neural cell adhesion molecule L1, encoded by the gene with accession number P32004, plays a pivotal role in brain development and function. It is involved in neuronal migration, axonal growth, fasciculation, and synaptogenesis. In the mature brain, it contributes to synaptic plasticity, influencing neuronal structure and function.

Therapeutic significance:

Mutations in the L1CAM gene are linked to several neurological disorders, including congenital hydrocephalus, MASA syndrome, and partial agenesis of the corpus callosum. Understanding the role of Neural cell adhesion molecule L1 could lead to novel therapeutic strategies for these conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.