AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Fascin

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.

Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by our partner Reaxense.

The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.

Our high-tech, dedicated method is applied to construct targeted libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.

Our library distinguishes itself through several key aspects:

  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.
  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.
  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.
  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.

partner

Reaxense

upacc

Q16658

UPID:

FSCN1_HUMAN

Alternative names:

55 kDa actin-bundling protein; Singed-like protein; p55

Alternative UPACC:

Q16658; A6NI89; B2RE97; Q96IC5; Q96IH1; Q9BRF1

Background:

Fascin, a 55 kDa actin-bundling protein, also known as Singed-like protein or p55, plays a pivotal role in cell motility and morphology. It orchestrates the organization of actin filaments into parallel bundles, essential for the formation of cell protrusions such as filopodia, membrane ruffles, and stress fibers. Fascin's involvement in actin reorganization and axon growth cone collapse in response to NGF highlights its significance in cellular dynamics.

Therapeutic significance:

Understanding the role of Fascin could open doors to potential therapeutic strategies. Its critical function in cell motility and migration positions it as a key target for interventions in processes where these activities are dysregulated.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.