AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for ADP-dependent glucokinase

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by our associate Reaxense.

In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.

We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.

 Fig. 1. The sreening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.

Key features that set our library apart include:

  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.
  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.
  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.
  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.

partner

Reaxense

upacc

Q9BRR6

UPID:

ADPGK_HUMAN

Alternative names:

RbBP-35

Alternative UPACC:

Q9BRR6; Q49AU7; Q8NBI1; Q8WZ90; Q96NF8; Q9H0A7

Background:

ADP-dependent glucokinase, also known as RbBP-35, plays a crucial role in glucose metabolism by catalyzing the phosphorylation of D-glucose to D-glucose 6-phosphate, primarily using ADP as the phosphate donor. Its ability to also utilize GDP and CDP, albeit with reduced efficiency, highlights its versatility in cellular energy management.

Therapeutic significance:

Understanding the role of ADP-dependent glucokinase could open doors to potential therapeutic strategies. Its pivotal function in glucose metabolism makes it a compelling target for addressing metabolic disorders and enhancing our arsenal against diseases linked to glucose regulation.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.