AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Tubulin-specific chaperone D

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by our associate Reaxense.

The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.

Our top-notch dedicated system is used to design specialised libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.

Our library is unique due to several crucial aspects:

  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.
  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.
  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.
  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.

partner

Reaxense

upacc

Q9BTW9

UPID:

TBCD_HUMAN

Alternative names:

Beta-tubulin cofactor D; SSD-1; Tubulin-folding cofactor D

Alternative UPACC:

Q9BTW9; O95458; Q7L8K1; Q8IXP6; Q8NAX0; Q8WYH4; Q96E74; Q9UF82; Q9UG46; Q9Y2J3

Background:

Tubulin-specific chaperone D, also known as Beta-tubulin cofactor D, plays a pivotal role in the tubulin folding pathway, essential for assembling tubulin complexes. It regulates microtubule dynamics, influencing both polymerization and depolymerization processes. This protein is crucial for the correct assembly and maintenance of the mitotic spindle, ensuring proper mitotic progression. Additionally, it is involved in neuron morphogenesis, highlighting its significance in cellular structure and function.

Therapeutic significance:

Given its involvement in progressive encephalopathy with early-onset brain atrophy and thin corpus callosum, understanding the role of Tubulin-specific chaperone D could open doors to potential therapeutic strategies. Its critical function in neurodevelopment and neurodegeneration points to its potential as a target for treating related neurological disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.