AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Ribosome biogenesis protein BMS1 homolog

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.

From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Our collaborator, Reaxense, aids in their synthesis and provision.

Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.

We employ our advanced, specialised process to create targeted libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.

Our library is unique due to several crucial aspects:

  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.
  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.
  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.
  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.

partner

Reaxense

upacc

Q14692

UPID:

BMS1_HUMAN

Alternative names:

Ribosome assembly protein BMS1 homolog

Alternative UPACC:

Q14692; Q5QPT5; Q86XJ9

Background:

The Ribosome biogenesis protein BMS1 homolog plays a crucial role in the small subunit (SSU) processome, facilitating the assembly of the first precursor of the small eukaryotic ribosomal subunit. It is involved in various stages of ribosome assembly, including RNA folding, modifications, and cleavage. This protein's alternative name is Ribosome assembly protein BMS1 homolog.

Therapeutic significance:

Linked to Aplasia cutis congenita, non-syndromic, a disorder characterized by the congenital absence of skin, the Ribosome biogenesis protein BMS1 homolog's genetic variants suggest its potential as a therapeutic target. Understanding its role could open doors to innovative treatments for skin development disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.