AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Class A basic helix-loop-helix protein 9

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.

Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by our partner Reaxense.

In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.

We use our state-of-the-art dedicated workflow for designing focused libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.

Our library stands out due to several important features:

  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.
  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.
  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.
  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.

partner

Reaxense

upacc

Q7RTU4

UPID:

BHA09_HUMAN

Alternative names:

Class F basic helix-loop-helix factor 42

Alternative UPACC:

Q7RTU4; A8MSH6

Background:

Class A basic helix-loop-helix protein 9, alternatively known as Class F basic helix-loop-helix factor 42, plays a pivotal role in limb development. It functions as a transcription factor, crucial in the transcriptional regulation of genes involved in limb morphogenesis.

Therapeutic significance:

Linked to diseases such as Split-hand/foot malformation with long bone deficiency 3, Syndactyly, mesoaxial synostotic, with phalangeal reduction, and Camptosynpolydactyly, complex, understanding the role of Class A basic helix-loop-helix protein 9 could open doors to potential therapeutic strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.