AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Forkhead box protein C2

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Our collaborator, Reaxense, aids in their synthesis and provision.

The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.

Our high-tech, dedicated method is applied to construct targeted libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.

Several key aspects differentiate our library:

  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.
  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.
  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.
  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.

partner

Reaxense

upacc

Q99958

UPID:

FOXC2_HUMAN

Alternative names:

Forkhead-related protein FKHL14; Mesenchyme fork head protein 1; Transcription factor FKH-14

Alternative UPACC:

Q99958; C6KMR9; Q14DA6

Background:

Forkhead box protein C2, known by its aliases Forkhead-related protein FKHL14, Mesenchyme fork head protein 1, and Transcription factor FKH-14, plays a pivotal role in cellular processes as a transcriptional activator. Its involvement in the formation of special mesenchymal tissues underscores its significance in developmental biology.

Therapeutic significance:

The protein's link to Lymphedema-distichiasis syndrome, a genetic disorder marked by limb lymphedema and double rows of eyelashes, highlights its clinical relevance. Understanding the role of Forkhead box protein C2 could open doors to potential therapeutic strategies for this syndrome.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.