AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Haloacid dehalogenase-like hydrolase domain-containing protein 2

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by our partner Reaxense.

The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.

We use our state-of-the-art dedicated workflow for designing focused libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.

Our library distinguishes itself through several key aspects:

  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.
  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.
  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.
  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.

partner

Reaxense

upacc

Q9H0R4

UPID:

HDHD2_HUMAN

Alternative names:

-

Alternative UPACC:

Q9H0R4; A8K7T3; Q96NV4

Background:

Haloacid dehalogenase-like hydrolase domain-containing protein 2, identified by the accession number Q9H0R4, plays a crucial role in cellular processes through its enzymatic activities. Its structure, belonging to the haloacid dehalogenase superfamily, suggests a broad substrate specificity and a potential role in metabolic pathways.

Therapeutic significance:

Understanding the role of Haloacid dehalogenase-like hydrolase domain-containing protein 2 could open doors to potential therapeutic strategies. Its involvement in key metabolic processes makes it a target of interest for drug discovery, aiming to modulate its activity in disease contexts.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.