AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for ER membrane protein complex subunit 7

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Our collaborator, Reaxense, aids in their synthesis and provision.

In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.

We employ our advanced, specialised process to create targeted libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.

Several key aspects differentiate our library:

  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.
  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.
  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.
  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.

partner

Reaxense

upacc

Q9NPA0

UPID:

EMC7_HUMAN

Alternative names:

-

Alternative UPACC:

Q9NPA0; B2RC00; Q96ED5

Background:

ER membrane protein complex subunit 7 plays a crucial role in the endoplasmic reticulum membrane protein complex (EMC), facilitating the energy-independent insertion of newly synthesized membrane proteins into endoplasmic reticulum membranes. It shows a preference for proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features. This protein is essential for the cotranslational insertion of multi-pass membrane proteins and the post-translational insertion of tail-anchored proteins, thereby controlling the topology of multi-pass membrane proteins like G protein-coupled receptors.

Therapeutic significance:

Understanding the role of ER membrane protein complex subunit 7 could open doors to potential therapeutic strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.