AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Jouberin

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.

We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by our associate Reaxense.

Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.

We use our state-of-the-art dedicated workflow for designing focused libraries.

 Fig. 1. The sreening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.

Our library distinguishes itself through several key aspects:

  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.
  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.
  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.
  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.

partner

Reaxense

upacc

Q8N157

UPID:

AHI1_HUMAN

Alternative names:

Abelson helper integration site 1 protein homolog

Alternative UPACC:

Q8N157; E1P584; Q4FD35; Q504T3; Q5TCP9; Q6P098; Q6PIT6; Q8NDX0; Q9H0H2

Background:

Jouberin, also known as Abelson helper integration site 1 protein homolog, plays a pivotal role in vesicle trafficking, ciliogenesis, and neuronal differentiation. It is a crucial component of the tectonic-like complex, essential for maintaining the integrity of primary cilia and facilitating ciliary signaling, particularly during cerebellum embryonic development. Its involvement in classical Wnt signaling underscores its significance in cellular communication and development.

Therapeutic significance:

Jouberin's association with Joubert syndrome 3, characterized by cerebellar ataxia, oculomotor apraxia, and potential renal disease, highlights its therapeutic significance. Understanding the role of Jouberin could open doors to potential therapeutic strategies for treating or managing this complex disorder, emphasizing the need for targeted research into its functions and disease mechanisms.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.