AI-ACCELERATED DRUG DISCOVERY

Focused On-demand Library for Elongator complex protein 3

Available from Reaxense
Predicted by Alphafold

Focused On-demand Libraries - Reaxense Collaboration

Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.

We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by our associate Reaxense.

The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.

We employ our advanced, specialised process to create targeted libraries for enzymes.

 Fig. 1. The sreening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.

Our library is unique due to several crucial aspects:

  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.
  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.
  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.
  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.

partner

Reaxense

upacc

Q9H9T3

UPID:

ELP3_HUMAN

Alternative names:

tRNA uridine(34) acetyltransferase

Alternative UPACC:

Q9H9T3; B4DE19; B4DIG1; E2QRI5; Q53G84; Q6AWB0; Q9BVF7; Q9NVZ1

Background:

Elongator complex protein 3, also known as tRNA uridine(34) acetyltransferase, plays a crucial role in tRNA modifications essential for accurate decoding, protein synthesis, and neurogenesis. It is involved in the acetylation of tRNAs and proteins, influencing neuron migration and cortical development.

Therapeutic significance:

Given its involvement in neurodegenerative disorders like Amyotrophic lateral sclerosis, where it may act as a disease modifier, targeting Elongator complex protein 3 could offer new avenues for therapeutic intervention in such conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we'll be in touch with all the details you need.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.